63/1 (SEM-4) COM HG 4046 (GE 4)

2022

COMMERCE

Paper: GE-4

(Business Mathematics)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×6=6
 - (a) Unit matrix is a
 - (i) diagonal matrix
 - (ii) scalar matrix
 - (iii) Both (i) and (ii)
 - (iv) None of the above
 - (b) If x denotes the volume of output, then $\frac{d}{dx}$ (TR) is equal to
 - (i) MR
 - (ii) AR
 - (iii) 0
 - (iv) None of the above

linear programming problem when the The graphical method is used to solve (J)

9 (1) number of decision variables is

- Z (ii)
- + (m)
- s (m)
- 2. Answer the following questions:
- and a determinant. (a) Write two differences between a matrix
- $\frac{dy}{dx} \text{ bin then find } \frac{dy}{dx} \frac{1}{x} = \frac{dy}{x}.$
- (c) Integrate

$$xp \frac{x}{x \text{ Bol}} \int$$

$$\begin{bmatrix} 3 & 2 & 2 \\ 2 & 1 & 1 \end{bmatrix} = \mathbf{A} \text{ bns } \begin{bmatrix} 2 & \xi - & 1 \\ 2 & \xi & 0 \end{bmatrix} = \mathbf{A}$$

(Jano runj.)

2×2=10

then find 2A-3B.

SSKB/424

JI (p)

(Continued)

determinant are identical, then the If any two rows (or columns) in a

- value of determinant will
- emes mismər (i)
- (ii) change by sign
- orsz sd (iii)
- (w) None of the above
- (a) $\int \frac{1}{x} dx$ is equal to
- $a + x_{D}$ (i)
- 0+0 (iii) 0+ x9 (ii)
- 0+x gol (w)
- then the formula for finding amount is If interest is compounded half-yearly,

$$\int_{0}^{\pi} \left(\frac{1}{001} + 1 \right) dt = A \quad (i)$$

$$^{nC}\left(\frac{1}{-1}+1\right)q=A \quad (ii)$$

$$^{n2}\left(\frac{1}{001\times 2}+1\right)q=A \quad (ii)$$

$$^{n\varepsilon}\left(\frac{\tau}{001\times\varepsilon}+1\right)\mathbf{q}=\mathbf{A}\quad\text{(iii)}$$

$$\int_{001\times E} 1 dt = V \quad (iii)$$

$$^{n^{\flat}}\left(\frac{1}{001\times^{\flat}}+1\right)\mathbf{q}=\mathbf{A}\quad (ui)$$

- (c) If any two rows (or columns) in a determinant are identical, then the value of determinant will
 - (i) remain same
 - (ii) change by sign
 - (iii) be zero
 - (iv) None of the above
- (d) $\int \frac{1}{x} dx$ is equal to
 - (i) $a^x + c$
 - (ii) $e^x + c$
 - (iii) 0+c
 - (iv) $\log x + c$
- (e) If interest is compounded half-yearly, then the formula for finding amount is
 - (i) $A = P\left(1 + \frac{r}{100}\right)^n$
 - (ii) $A = P\left(1 + \frac{r}{2 \times 100}\right)^{2n}$
 - (iii) $A = P\left(1 + \frac{r}{3 \times 100}\right)^{3n}$
 - (iv) $A = P\left(1 + \frac{r}{4 \times 100}\right)^{4n}$

(f) The graphical method is used to solve linear programming problem when the number of decision variables is

- (i) 6
- (ii) 2
- (iii) 4
- (iv) 5

2. Answer the following questions:

2×5=10

- (a) Write two differences between a matrix and a determinant.
- (b) If $y = x^3 \frac{1}{x^2}$, then find $\frac{dy}{dx}$.
- (c) Integrate

$$\int \frac{\log x}{x} \, dx$$

(d) If

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 3 & 5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 2 & 5 & 6 \\ 1 & 1 & -2 \end{bmatrix}$$

then find 2A-3B.

(Continued)

- (e) Find the interest on ₹730 from 15th March to 1st September (of the same year) @ 5% per annum.
- 3. Answer any six of the following questions:

(a) Solve the following system of simultaneous linear equations by Cramer's rule:

$$2x+3y-z=15$$
$$4y+2z=16$$

$$3x + 2y = 18$$

(b) Without expanding, prove that

$$\begin{vmatrix} bc & a & a^2 \\ ca & b & b^2 \\ ab & c & c^2 \end{vmatrix} = \begin{vmatrix} 1 & a^2 & a^3 \\ 1 & b^2 & b^3 \\ 1 & c^2 & c^3 \end{vmatrix}$$

(c) If $f(x) = x^2 - 3x + 2$, then find f(A), where A is a matrix given by

$$\begin{bmatrix} 3 & 1 & 2 \\ 0 & 1 & 4 \\ -1 & 1 & 0 \end{bmatrix}$$

(d) (i) The total cost function
$$C(x)$$
 of producing x items is given by

$$C(x) = \begin{cases} 1000 + 5x; & \text{when} \quad 0 \le x \le 500 \\ 2000 + 4x; & \text{when} \quad 500 < x \le 2000 \end{cases}$$

Find the cost of producing (1) 430 items and (2) 1200 items. 2

(ii) If

$$f(x) = \frac{ax+b}{bx+a}$$

then prove that $f(x) \cdot f\left(\frac{1}{x}\right) = 1$.

(e) Evaluate:

(i)
$$\lim_{x\to 2} \frac{x^2-x-2}{x^2-4}$$

(ii)
$$\lim_{x\to 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$$

(f) If

$$y = 2x + \frac{4}{r}$$

then prove that

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = 0$$

- Verify Euler's theorem for the function $f(x, y) = x^3 + 2x^2y + y^3.$
- (h) Define objective function, feasible region and feasible solution associated with linear programming.
- A machine depreciated in value each year 10% of its previous value and at the end of fourth year its value was ₹1,31,220. Find the original value of the machine.
- Answer any two of the following questions: 10×2=20
 - Solve the following system of equations by using matrix inversion method:

$$3x+4y+5z=18$$

 $2x-y+8z=13$
 $5x-2y+7z=20$

(b) For a monopoly firm producing a certain article can sell x articles per week at p rupees each, where 5x = 375 - 3p. The cost of production is $\left(500+13x+\frac{1}{5}x^2\right)$ Find how many articles rupees. should monopolist produce the for maximum profit. What is that maximum profit?

(i) If $u = 2(ax + by)^2 - (x^2 + y^2)$, then (c) show that

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 4(a^2 + b^2) - 4$$

- (ii) The marginal cost of producing x units of a product is given by $(25+30x-9x^2)$ and the fixed cost is known to be 55. Find the total cost and average cost functions.
- Answer any one of the following questions: 14
 - programming linear (a) problem? What are the basic assumptions of linear programming 2+5=7 problem?
 - (ii) Solve the following LPP by graphical method:

Maximize Z = 3x + 4usubject to $4x + 2y \le 80$

 $2x + 5y \le 180$

 $x \ge 0, y \ge 0$

22KB/454

(Turn Over)

5

7

(b) (i) What is sinking fund? A sinking fund is created for the redemption of debentures of ₹ 1,00,000 at the end of 25 years. How much money should be provided out of profits each year for the sinking fund, if the investment can earn interest @ 4% per annum?

[Given, $log 1 \cdot 04 = 0 \cdot 0170$, antilog $0 \cdot 425 = 2 \cdot 661$] 2+6=8

(ii) At what rate percent will ₹6,000 amount to ₹7,500 in 4 years? [Given, log1·25 = 0·0969, antilog 0·0242 = 1·057]

6